Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Structure, Stability, and Electronic Properties of the 2D van der Waals Selenophosphate LiGaP 2 Se 6We report the two-dimensional (2D) bimetallic selenophosphate, LiGaP2Se6, prepared through direct combination reactions and P2Se5 flux methods. The material is a member of the broad class of van der Waals 2D materials of the type M2P2Q6 (M = metals). The structure was determined using single-crystal X-ray diffraction and refined in the chiral space group P3̅1c, with lattice parameters a = b = 6.2993(9) Å, c = 13.308(3) Å, α = β = 90°, γ = 120°. Differential thermal analysis indicated a congruent melting point at ∼458 °C. Optoelectronic properties were assessed using ultraviolet–visible (UV–vis) spectroscopy, showing a band gap of 2.01 eV, and photoemission yield spectroscopy in air (PYSA), which determined a work function of 5.44 eV. Notably, stability studies on LiGaP2Se6 revealed remarkable resilience despite its Li content, showing no structural changes after 2 weeks in ambient air or after soaking in a water/ethanol bath.more » « lessFree, publicly-accessible full text available July 30, 2026
-
Free, publicly-accessible full text available July 1, 2026
-
Free, publicly-accessible full text available June 27, 2026
-
Free, publicly-accessible full text available July 8, 2026
-
Free, publicly-accessible full text available July 23, 2026
-
Free, publicly-accessible full text available June 9, 2026
-
A revised crystal structure of La(OH)2Cl is reported. This material is found to crystallize in space group P21/m and is isostructural to a series of Ln(OH)2Cl (Ln = Ce – Lu excluding Pm). The Ln(OH)2Cl series has been thoroughly studied, serving as analogues to proposed actinide structures for used nuclear fuel storage. The P21/m space group has been reported for each isostructural variant in this series. La(OH)2Cl is described in the context of the structural trends identified with this series. A lanthanum variant was previously reported, however, with symmetry corresponding to the space group P2/m. The data collected herein is compared to the previously published La(OH)2Cl in the space group P2/m. Here, we report an updated hydrothermal synthesis and revised crystallographic structure for La(OH)2Cl in P21/m. The reflection conditions of the collected X‐ray diffraction data, the bond valence sums of both structures, and density functional theory calculations are examined to justify the revised space group assignments.more » « lessFree, publicly-accessible full text available April 17, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available April 8, 2026
An official website of the United States government
